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1. Introduction 

1.1 Significance of Soil Earth Observation 

The soils on earth are an existential and fundamental resource for humanity 

(DOMINATI et al. 2010: 1858–1868), as well as for the planet’s ecosystem (YOUNG et 

al. 2004: 113–132). The 2005 Millennium Ecosystem Assessment identified four 

major services granted by soils (Millennium Ecosystem Assessment: 2005): 

- providing direct and indirect food, as well as water, wood, fiber and fuel, 

- regulating services regarding water, climate, floods and erosion, 

- cultural services in the domains of recreation, spirituality and aesthetics. 

- supporting services as to the nutrition cycle, providing a habitat and 

supporting biodiversity. 

Thus, soils play an important regulating and limiting role for the atmosphere, 

lithosphere, hydrosphere and biosphere (SZABOLCS: 1994: 33–39). Because of its 

many variations, soils are “one of the most complex biomaterials on the planet” 

(ADHIKARI et al. 2016: 101–111), also playing a role in climate change (OMUTO et al. 

2013: 81). Since soils are important for many economic and ecological factors, 

information about them needs to be embedded into political decision making and 

supported by accurate and cost-effective scientific data (DAILY et al. 1997: 113–132). 

In the past, information about the soils and their dynamics have been mostly gained 

through in-situ sampling, which is rather expensive and time-consuming (HANKS et 

al. 1962: 530 ⁠; RUBIN et al. 1963: 247–521). Since the opening of the Landsat Archives 

(WOODCOCK et al. 2008: 1011), large scale images over long time periods are 

available and used for land monitoring (HANSEN et al. 2012: 66–74). A great effort 

has been made using multispectral satellite and aircraft imagery to gain soil 

information (MULDER et al. 2011: 1–19), in order to expand existing soil databases 

(BEN-DOR et al. 2008: 321–392). In the age of precision farming, where soil 

information is essential, satellite-based information can fill the gap between small 

scale measurements (CANDIAGO et al. 2015: 4026–4047) and very coarse information 

as the Harmonized World Soil Database (NACHTERGAELE et al. 2009: 33-37). Not 

only providing this information on a large spatial scale, satellite-based information 



2 
 

can also provide continuous monitoring on a much higher temporal scale by providing 

images and their analysis in short intervals. 

1.2 Visibility of Soil Parameters in Earth Observation 

The research conducted thus far mostly focuses on aircraft multi- and hyperspectral 

imagery, since these data acquisition methods provide a higher spectral resolution and 

fewer disturbances (OCHSNER et al. 2013: 1888–1919⁠; STEVENS et al. 2008: 395–

404). In the past, extensive studies have been conducted regarding the detection and 

quantification of the organic carbon content of the soil, as well as for soil texture and 

soil type detection (BARNES et al. 2000: 731–741⁠; JARMER et al. 2003: 115–123). The 

visibility of soil parameters in multispectral and hyperspectral imagery was 

investigated by Bayer et al in 2016 for the Corg content (BAYER et al. 2016: 3997–

4010), Lakshmi et al in 2015 for soil texture (LAKSHMI et al. 2015: 1452–1460) and 

Nanni et al in 2012 for a soil type discrimination (NANNI et al. 2012: 103–112) and 

found to be generally possible. 

This thesis also attempts to identify distinguishing reflectance characteristics but 

based on the Soil Composite Mapping Processor (SCMaP). Since these distinctions 

have been successfully identified previously, this thesis tries to recreate these results 

based on the SCMaP output. 

1.3 Soil Composite Mapping Processor (SCMaP) 

1.3.1 SCMaP 

The basis for this thesis is the product derived from the Soil Composite Mapping 

Processor (SCMaP) as developed by Derek Rogge et al. (2018) at the German 

Aerospace Center (DLR). This processor utilizes Landsat imagery from 1984 until 

2014 to create an exposed soil map on a regional scale, using the temporal dimension 

of the data to overcome soil exposure inconsistencies and atmospheric influences by 

looking at vegetation cycles (ROGGE et al. 2018: 1–17). 

Landsat-data from missions 4 (Sensor: TM), 5 (Sensor: TM) and 7 (Sensor: ETM+) 

was used due to their free availability and most importantly their long-term 

continuous data acquisition (WOODCOCK et al. 2008: 1011). This processor is then 
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applied to create the aforementioned soil exposure map, which is used as the data 

basis for this thesis. 

SCMaP was initially developed for Germany based on 36 path/row combinations with 

a scene size of 170 km north-south and 183 km east-west (paths 192-197, rows 22-

27). The TM sensor onboard of Landsat 4 and 5 collects spectral information on six 

bands ranging from 0.45 to 2.35 μm with a spectral resolution of 30 m. On board of 

the Landsat 7 satellite, the ETM+ sensor was placed, which has a similar setup as the 

TM with the addition of a panchromatic band at 15m spatial resolution. After the scan 

line corrector (SLC) failure of Landsat 7 in May 2003, 22% of any given scene is 

missing. Different areas are affected by the failure for every flyover, thus image 

stacking can be used to provide continuous coverage. 

The data type of the downloaded images is the compressed GeoTIFF format in an 

Universal Transverse Mercator Projection with the WGS 84 datum (ROGGE et al. 

2018: 1–17). The dataset is made of scenes classed as “Tier 1 precision and terrain 

corrected” (L1T) and hence is deemed appropriate and accurate enough for time-

series analysis by the USGS. 

 

In order to achieve a high quality of detection of exposed soils, artifacts and visual 

obstructions need to be removed. According to Zhang et al. (ZHANG et al. 2005: 357–

371), the global annual mean cloud coverage in Landsat satellite image datasets is 

approximately 66%. Identifying clouds, as well as their shadows, proved to be crucial, 

since their darkening and brightening effects complicate many remote sensing 

applications. The “Fmask” algorithm of Zhu and Woodcock (2012) is used, which 

has a detection rate of 96.4% (ZHU et al. 2005: 357–371). 

Secondly, the ATCOR  software introduced in 2008 by R. Richter et al. is used to 

minimize the effects of atmospheric disturbances such as water vapor and aerosols. 

Starting from the “digital number” value, the individual pixel metadata consisting of 

coordinates, illumination angle and the date of acquisition are taken into account to 

derive the bottom of atmosphere reflectances via the top of atmosphere radiances 

(RICHTER et al. 2006: 2077–2085). 

Due to snow- and cloud cover during the winter, images taken within the first and last 

30 days of the year are eliminated. After the application of the processor for Germany 

as done by the DLR, 9,331 Landsat scenes remain. 
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After the preprocessing, the scenes are transformed into 1° by 1° tiles and broken up 

into six time frames of five years. The only exception is the first timeframe, which 

contains the data of 6 years (1. 1984-89, 2. 1990-94, 3. 1995-99, 4. 2000-04, 5. 2005-

09, 6. 2010-14). Additionally, all data from 1984 until 2014 are combined into a 

seventh timeframe by the DLR, which is the final SCMaP product showing the 

exposed soils used in this thesis (ROGGE et al. 2018: 1–17). This product will be 

refered to as SRC. 

 

Fundamentally, SCMaP tries to identify exposed soil pixels (without vegetation) in 

the images. Other than in very rare conditions in the Bavarian Alps above the tree line 

or along the shore of oceans and rivers, naturally exposed soil occurs very rarely. A 

key characteristic of exposed soil is a very low vegetation index, such as the 

Normalized difference vegetation index (NDVI), which has been used since the early 

days of Earth Observation (ROUSE et al. 1974: 309–317). This vegetation index uses 

the high reflectance rate of healthy green plants in the near infrared range from 0.7 to 

1.1 µm to create a photosynthetically active vegetation index (PV) (KRIEGLER et al. 

1969).  

 

Rogge et al. decided to use a modified version of the NDVI for the highest/lowest PV 

selection. The blue  channel was introduced to the Index, in order to reduce the higher 

reflectance effect of thin haze in pixels, which were not correctly revised during the 

preprocessing stage.  

 

 
Equation 1: PV determination, modified NDVI for SCMaP 

A low value of the aforementioned vegetation index value by itself is not sufficient 

to detect exposed soils, since water and other anthropogenically influenced regions 

as well as non-photosynthetically active vegetation have a low PV value as well. 

Since exposed soils most commonly occur on agriculturally used land (in Germany), 

their distinguishing characteristic is a high seasonal variability of the PV. Due to 

growing and harvesting/plowing seasons, agriculturally active areas experience at 

least one, if not several distinct changes in PV every given year (ROGGE et al. 2018: 

1–17). Because of the high temporal resolution of the Landsat data, these changes can 
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be detected and quantified in order to create a composite image. This composite image 

encompasses both the highest and lowest PV values for each pixel. 

The next step is overlaying the composite with the Coordination of Information on 

the Environment (CORINE) Land Cover data set (CLC). After eliminating those 

pixels, which underwent a change in the CLC classification, 5000 pixels were 

randomly selected and then plotted to show their maximum and minimum PV value, 

as well as their CLC classification group (Figure 1) (ROGGE et al. 2018: 1–17). 

 

Pixels classed as agricultural 

land can be clearly 

distinguished from other 

pixels by their significant 

difference between maximum 

and minimum PV, a clear 

cluster of the “fields” 

classification is visible. 

Different classifications such 

as coniferous and deciduous 

trees have a similar maximum 

PV value, but the lower 

minimum PV value increases the variability, enabling the distinction between the 

classes. 

Finally, thresholds are manually chosen to “box in” this cluster of soil pixels after 

careful examination of the five test tiles. An automatization of the threshold selection 

process is currently under development (ROGGE et al. 2018: 1–17). 

1.3.2 SCMaP Product –Soil Reflectance Composite 

The main result of SCMaP is the SRC, which shows the mean reflectance value of 

those pixels, which were identified to have undergone significant changes in PV and 

are thus classed as exposed soil. Those composites are created for each timeframe and 

show the average reflectance value for each band of the stack of images at any given 

soil pixel. The error rate for identifying exposed soils of the SRC over the whole 30 

year period is stated as 2.24% (Rogge et al. 2018: 1–17). 

Figure 1: SCMaP Threshold Selection 
(adapted from ROGGE et al. 2018: 1–17) 
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1.4 Research Objectives 

The aim of this thesis is to extract a maximum of soil related information from the 

Soil Composite Mapping Processor product, using the technique of machine learning. 

More specifically, the SRC of the years 1984-2014 is used. 

SCMaP, as previously described, is a method for identifying bare soil pixels from 

averaged reflectance data from these points; the reflectance composite thus contains 

spectral information about the soils. By examining the SRC pixel colours (cf. “2.2 

Reflectance Soil Composite”), areas of conformity can be clearly distinguished from 

other areas, even though all pixels represent bare soil. Based on this observation, the 

idea to try to extract information about soil parameters was conceived and this 

hypothesis formed. Variances in reflectance could possibly be traced down to local 

differences in soil parameters. 

Based on in-situ soil samples and their reflectance value of the according SRC pixel, 

predictions will be made for all other SRC pixels regarding their soil parameters.  

Since the pixels have to be assigned to predefined classes, the machine learning 

method of random decision forests was chosen in order to make these predictions. 

 

The objectives can be more precisely articulated with the following questions:  

-Do the reflectance values of SCMaP pixels correlate with the soil parameters of 

carbon organic content, soil type and soil texture? 

-Can a random decision forest perform an accurate classification of the entirety of the 

SCMaP product? 

 

Figure 2 shows the workflow of this thesis. After acquiring and preprocessing the 

input data, a database is built, containing the spectral information of the sampling 

locations as well as their soil parameters. This database is then analysed for statistical 

correlations between the reflectance and the soil parameters, checking to what degree 

the classes are spectrally distinguishable. Using the input database, a random decision 

forest machine learning classification method is built, which predicts the soil 

parameters for all pixels of the SCMaP composite. The predictions are consequently 

transformed into three soil parameters maps. The previously obtained statistical 

results are used to check the accuracy of the predictions.  
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Figure 2: Workflow 

Green: inputs, yellow: processing steps, red: results 

2. Data and Study Area 

2.1 Study Area 

Based on the 1° by 1° tiles of the SCMaP output, twelve of these tiles were chosen as 

the study area (Figure 3).  

 
Figure 3: Study area in relation to Germany and the state of Bavaria 

These tiles were selected because they mostly cover Bavaria and exclude the 

southernmost region of the state where the Alps are located, preventing alpine 
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samples with different soil genesis and sediment configurations from distorting the 

dataset. It is focused on Bavaria because of the availability of geocoded soil samples 

(cf. “2.3 Soil Sample Point Information”). Some areas of the tiles also cover territories 

of the German federal states of Baden-Württemberg in the west, Hesse, Thuringia, 

and Saxony in the north as well as parts of the Czech Republic and Austria in the east. 

  

As a result of the central European location of the study area, the climate is classed 

as “temperate oceanic” according to Köppen (Cfb). Mean annual temperatures range 

from 9°C to 4°C with a precipitation of 550 mm up to 2500 mm (CHEN D. et al. 

2015: 69–79). 

Geomorphologically the area consists of a sedimentary filled basin formed by glacial 

advances during the last ice age at the foot of the Alps in the south surrounding 

Munich. In the north of Munich are the mountain ranges of the Franconian Jura in the 

northwest and the Bavarian and Bohemian Forests in the northeast. The northernmost 

area encompasses the South German Scarp lands in the northwest as well as parts of 

the Thuringian-Franconian Highlands. These are relatively low mountain ranges with 

peaks just shy of 1000m, formed by the variscan orogeny.  

Mostly, soils in the study area are classed as Cambisols and Luvisols (this includes 

their German classification of brown earths), covering about 45% of the area. With 

15% coverage Regosols are the next most frequent, followed by water stagnation soils 

like Stagnosols at 12%, according to the BKKA (AD-HOC AG Boden: 2005: 173-

175) , and their equivalent soil classes of the World Reference Base for Soil 

Resources system (IUSS Working Group WRB 2006). 

The CLC classification shows that 31% of the study area is cropland, 37% is covered 

by forests and 18% is grassland. 

2.2 Soil Reflectance Composite 

As a spectral database, this thesis uses the Soil Reflectance Composite, as processed 

by the DLR after the SCMaP workflow, combined for the years 1984 until 2014. The 

long timespan is chosen for this thesis because of the higher number of individual 

pixels classed as fields and cropland over the larger timespan. This results in a larger 

repository for comparing reflectance values to the SSLs. In the 5-year time frames on 

the other hand, the total amount of pixels is smaller and thus the likelihood of a soil 



9 
 

sample intersecting a soil pixel is decreased. Additionally, most of the SSLs have 

been taken at dates distributed from the 1980s to the 2000s, choosing a 5-year period 

would limit the available SSLs.  

Most importantly, averaging out the reflectance values over a greater amount of time 

helps reduce variability due to medium-term weather influences such as droughts, 

exceptionally long summers or extended wet periods. 

The spectral basis for this thesis consequently consists of about 63 million 30 m by 

30 m pixels from Landsat missions 4, 5, and 7 which have been identified as exposed 

soil, containing spectral bands (Table 1) averaged out over the timeframe 1984-2014. 

Band 6 is a thermal band with a range from 10.40 - 12.50μ and was therefore removed. 

An excerpt of the final SRC shows the pixels identified as exposed soils as an RGB 

image, all other pixels are removed (white background) (Figure 4). 
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Table 1: Landsat Bands used in SCMaP 

Band Number Band Name Range 
Band 1 Blue 0.45 - 0.52 μm 
Band 2 Green 0.52 - 0.60 μm 
Band 3 Red 0.63 - 0.69 μm 
Band 4 Near-Infrared 0.77 - 0.90 μm 
Band 5 Short-Wave Infrared 1 1.55 - 1.75 μm 
Band 7 Short-Wave Infrared 2 2.09 - 2.35 μm 

 

 

 

 

 
Figure 4: Excerpt of area of SRC for Bands 7 (represented as R), 5 (represented as G) 
and 3 (represented as B). False-color image. Areas of conformity in color are visible.  
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2.3 Soil Sample Point Information 

2.3.1 Point Samples 

In order to create an input database with sample locations and their known soil 

parameters, several data sources are compiled together. Two state agencies provided 

their non-public data points to this thesis. Additionally, a database from the 

European Statistical Office is used. The different sources, their methods of 

acquiring the data and its representation is explained below. 

LFU 

The Bavarian State Office for the Environment (Bayerisches Landesamt für Umwelt 

- LFU) maintains a network of sampling locations in Bavaria. Sites are selected based 

on an 8 km by 8 km grid which is drawn over the state, exact sampling locations are 

then picked within a 500-meter radius around the grid nodes to find a suitable 

position. Special attention is given to choosing sites as homogeneously as possible 

regarding altitude, relief, soil type, parent rock and vegetation (WIESMEIER et al. 

2014: 208–220). Only sample locations which are situated within an agricultural field 

were made available by the LFU, 2086 in total. 

The soil type attribute of these points is given in abbreviations according to the 

German soil systematic BKKA  (AD-HOC AG Boden: 2005: 173-175), for example 

“RR-BB” for rendzina/brown earth, as well as their highest-tier classification of the 

soil group, in the aforementioned example “B” for brown earth. 

Top soil texture is given in four classes according to the BKKA (AD-HOC AG 

Boden: 2005: 132-133),: sand, with a diameter of 0.063 mm to 2 mm; silt, with a 

diameter of 0.002 mm to 0.063 mm; clay, with a diameter smaller than 0.002 mm and 

loam, which is an even mixture of the three diameter classes. 

Appended are finer distinguishing prefixes, such as “Sl” to indicate the presence of 

other diameter classes, with the dominant class written in a capital letter. 

The unit in which the carbon organic content is listed is mg/g. 

LfL 

The Bavarian State Office for Agriculture (Bayerische Landesanstalt für 

Landwirtschaft - LfL) is part of a network of permanent soil sampling sites, 

aggregated and maintained by the German Federal Environmental Agency. All points 
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located within the state of Bavaria and on land classified as agriculturally used were 

provided to this study by the LfL (in total 118 sampling locations). More than 400 

parameters are recorded for each location, including all of the soil parameters relevant 

in this study, as well as for example land use, in-depth soil analysis, and radioactive 

measurements (SCHILLI et al. 2011: 16) .The network exists since the 1980s, each 

location is revisited once every 1 to 10 years, depending on the individual point 

(KAUFMANN-BOLL et al. 2011: 4).  

Since several measurements at different points in time are present for any given point, 

they need to be modified. Samples taken outside of the timeframe were removed, the 

remaining Corg values were averaged and then transformed into their according 

classes (cf. “2.3.2 Preprocessing”). None of the points showed a change in soil type 

or soil texture, thus the classification could be easily transferred. After the 

transformation, one single value was left for each soil parameter used in this thesis. 

LUCAS 

The European Statistical Office (Eurostat) conducts the “Land Use/Cover Area frame 

Survey” (LUCAS) since 2001 and is available for all EU member states since 2012. 

In this survey, sample points are placed over the European Union in a grid with a 

width of 2 km in between nodes. Each of the 1.1 million points is sampled and classed 

individually. Many different measurements are taken, including the humus content of 

the top soil, but not the soil class or the soil texture (TÓTH et al. 2013: 3-6). The humus 

content can be easily converted into the organic content of the topsoil, so that the 

LUCAS information can be used to expand the Corg training dataset, but not the soil 

type and soil texture datasets. Unlike the other two data sources, the LUCAS dataset 

is not limited to Bavaria, meaning that there are also points located within areas which 

fall outside of the state into other German federal states as well as into the Czech 

Republic and Austria. A total of 505 LUCAS points are available for the twelve test 

tiles.  
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2.3.2 Preprocessing 

The data from the different sources need to be unified into the same format. Merging 

the data from all sources is only possible if the classifications for the soil parameters 

follow the same structure. As mentioned in the data descriptions the classification 

methods differ from each other.  

 

Information regarding soil type is converted to the highest tier classification as given 

in the German soil systematic BKKA (AD-HOC AG Boden: 2005: 173-175). The 

classes are presented in Table 2. 

  

Figure 5: Distribution of Soil Sampling Locations, color-coded by origin. 
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Table 2: Soil Type Classes 

Symbol German Name 
(BKKA) 

Translated Name 

A Auenboden Floodplain Soil 
B Braunerde Brown Earth 
D Pelosol Pelosol 
G Gley Gley 
L Lessivés Lessivés 
M Marsch Marshland Soil 
P Pelosol Pelosol 
R Rendzina Rendzina 
S Stauwasserböden Water Stagnation Soils 
T Tschernosem Chernozem 
Y Terr.-Anthr. Boden Anthrosol 

 

Soil texture classifications are also converted to their highest-tier classes by keeping 

the majuscule letter of the abbreviation given in the BKKA (AD-HOC AG Boden: 

2005: 173-175), see Table 3. 

 

Table 3: Soil Texture Classes 

Symbol Name Grain Size 
S Sand 0.063 mm to 2 mm 
U Silt 0.002 mm to 0.063 mm 
T Clay < 0.002 mm 
L Loam Even mixture of the three 

 

Corg values were given in different units by the different data sources. The LFU used 

mg/g, while LfL used percentage. The conversion to percent is easily done, but the 

LUCAS database gives Corg values only indirectly by specifying the humus content 

of the top soil. According to the BKKA, humus is made up of 58% organic carbon  

(AD-HOC AG Boden: 2005: 107). Therefore, multiplying the humus content by the 

factor 0.58 returns the Corg content in its original unit, which was also percent. All of 

the Corg-information is thus converted to the same unit and format (percentage of soil 

mass). 

As seen in Table 4, the values are classed according to the carbon content 

classification of the BKKA  (AD-HOC AG Boden: 2005: 109).  
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Table 4: Soil Organic Carbon Content Classes 

Symbol Organic Carbon Content Range 
k1 <0.5 % 
k2 0.5 - 2.0 % 
k3 2.0 - 5.0 % 
k4 5.0 - 15.0 % 
k5 15.0 - 30.0 % 
K >30.0 % 

 

The tables from the data providers can be merged because of the data conformity after 

the aforementioned restructuring and conversion. LUCAS points are given the soil 

type and soil texture value of “nA”, simplifying their detection and exclusion from 

soil type and texture classifications further down the line. 

In order to create a joined spatial database with correct location data, the point 

information is reprojected into the same map projection. Since both Bavarian 

agencies use the Gauß-Krüger coordinate system, they are warped into WGS1984 

EPSG:4326 to fit the LUCAS data as well as the WGS1984 formatted .tiff SCMaP 

mosaics which are used in this thesis. Also, unique IDs are given to each point 

location. 

 
Figure 6: Preprocessing of Soil Sample Locations. 

Sankey Diagram, width of bars is proportional to amount of SSLs. 
Grey: data sources, red: eliminated SSLs, green: final dataset, yellow: composition of 

final dataset. 
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Following the conversions and attribute-related changes, the 2,709 data points need 

to be adapted to the spectral data and the study area.  

As shown in the Sankey Diagram (Figure 6), 95 points are eliminated because they 

are not within the twelve tiles. 792 sample points are excluded because they were not 

taken within the 1984 - 2014 timeframe. Even though it is not likely that soil type, 

Corg content or soil texture will change during a few decades, it is still preferred that 

the sample point was actually once depicted in the spectral data. 

Afterwards, an intersect is performed to retain only those locations which are situated 

on a pixel of the SRC. Another 374 points are discarded during this step. 

Within the SRC pixels, severe spectral outliers are expected. At a pixel size of 30 m, 

the pixel might consist of 50% cropland and 50% road or pavement. To eliminate 

distortion by these outliers, a matrix of 3 by 3 pixels around the SSLs is created. SSL 

pixels which display a deviation of more than twice the standard deviation compared 

to the surrounding pixels in the matrix are removed (Figure 7). By doing so, another 

155 pixels are excluded. 

 
Figure 7: Histogram of pixels in 3x3 matrix around original locations, also showing 

standard deviation multiples. 
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After all ground-sampled data is merged, they need to be combined with the spectral 

data. Reflectance data from the SRC is now gathered by sampling the pixel 

reflectance value of every location from the list. Values for all six bands are added to 

each respective point as attributes in the list.  

The final input database is hence an indexed list containing x and y coordinates, their 

classifications regarding soil type, Corg content and soil texture aggregated and 

uniformized; as well as the six local reflectance values extracted from the SRC for 

1293 entries. A column showing the Corg numerical value is also included. 

975 of these points have attributes regarding soil type and/or texture, due to the 

LUCAS database almost all 1293 locations have an attribute regarding their Corg 

content. It is important to note that due to in-field sampling errors, some SSLs do not 

have a valid data entry. The attribute itself is not removed because it has entries for 

the other parameters. The statistical methods and Random Decision Forest methods 

used automatically ignore these fields (“no entry” percentage: Corg 0,15%, soil type 

2,36%, soil texture 1,33%) 

 

3. Methodology 

3.1 Analysis of distributions within dataset 

Initially, the input dataset is analysed with a focus on the soil parameters, gaining 

knowledge on the distribution of the classes is essential. Regarding the three different 

soil parameters, it is important to know how the classes are distributed within the 

dataset. An overwhelming majority of one or several classes could drain out other 

classes or limit the validity of their spectral boundaries if there are only a few points 

available in the dataset for a given class. Therefore, the class distributions are 

visualised as bar graphs. 

 

Then, the aggregated training dataset with their spectral information is statistically 

analysed in order to visually determine correlations between different classes and 

their reflectance values. All points are plotted as individual graphs. Plotting all points 

together results in a visualisation of the variance within the dataset. Combining the 
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points and adding graphs showing the mean reflectance as well as the standard 

deviation can show the variance inside the classes, as well as expose possible outliers. 

 

Since the Corg soil parameter also carries a numerical value, a scatterplot can further 

visualize the distribution of those values. Consequently, a scatterplot is created for 

each band, plotting the Corg value against the reflectance value of the bands. Colouring 

the points according to their class shows the distribution of reflectance values of the 

classes in direct comparison to the other classes of this individual band, enabling a 

visual judgement as to how far the classes are varying.  

 

Then, for each soil parameter, the mean spectra of all classes are plotted together, 

allowing for a visual comparison of the graphs, as well as enabling the visual 

identification of the distinguishability of the classes. 

 

In order to back up the previous visual observations with numbers, a table showing 

the differences between the classes is created. For each soil parameter, the classes are 

plotted against each other showing the differences in reflectance between them for 

their manually chosen most distinctive single band. The differences between the 

classes are shown as percentages, enabling the cross-referencing of all classes for this 

individual band. This allows for the identification of classes with a higher percentage 

in spectral difference in singular band and thus have a higher chance of correct 

prediction. 

3.2 Correlation Coefficients 

Two statistical correlation methods are implemented to find possible correlations in 

the dataset where numerical values are available (Corg), the Pearson (Pearson R) and 

Spearman correlation coefficients (Spearman R). Since the other soil parameters are 

classed and without numerical values, correlation cannot be examined in those cases. 

For each of the six bands, a correlation between Corg value and reflectance is 

examined using the “SciPy” open source scientific computing library for Python 3.7 

(MILLMAN et al. 2011: 9–12). 

The scipy.stats.pearsonr utility calculates the correlation according to the method 

derived by Karl Pearson (PEARSON 1896: 253–318). As a measure of linear strength 
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of association between two observations (bivariable), the coefficient ranges from -1 

and 1, which represent the highest correlation values for negative and positive 

correlation, to 0, which indicates no correlation (CHEN et al. 1981: 135⁠; CROUX et al. 

2010: 497–515).  

           

Equation 2: Pearson correlation coefficient 

            

  

As this simplified formula (Equation 2) shows, the Pearson correlation coefficient 

(R) is the covariance of each set of the bivariable (x and y), divided by their multiplied 

standard deviations (σx, σy) (PARK: 2018: 213–265). Pearson R is applied to the 

training data in order to evaluate a possible direct linear correlation. 

 

Spearman R works similar to Pearson’s method, but the variable sets are ranked 

beforehand. Each variable is given it’s rank along the axis as its new value, starting 

at the lowest value with rank one. This replacement of absolute values with their rank 

from lowest to highest removes the variability and is thus useful in detecting 

monotinic trends within the dataset. 

With the values changed to their corresponding ranks, the Pearson R method is 

executed (WEAVER et al.: 2018: 435–448). The resulting Spearman correlation 

coefficient takes the same form as the Pearson coefficient, meaning +1 and -1 stand 

for highest positive and negative correlation, while 0 indicates no correlation (CROUX 

et al. 2010: 497–515). Due to its ranking system, the Spearman R is able to more 

accurately detect monotonic relationships, thus relationships where while variable x 

declines in value, variable y never increases and vice versa (BORKOWF 2002: 271–

286). Removing the absolute values makes this coefficient less vulnerable regarding 

outliers and as long as the x and y values develop in the direction of the same algebraic 

sign (regardless of their absolute value), a correlation is detected. (ROWE 2015: 311–

335). Spearman R is chosen to detect a possible monotonic trend relationship between 

reflectance and Corg content, in case there is a correlation between rising reflectance 

values and rising Corg content or vice versa.  
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3.3 Component Analysis 

3.3.1 Principal Component Analysis (PCA) 

While dealing with multispectral data such as the training dataset, it is challenging to 

visualize the variance inherent in the spectral bands. Each band stands for one 

dimension in which the data might vary. In order to reduce the dimensionality, a 

Principal Component Analysris is performed  (PEARSON 1901: 559-572). PCA has 

established itself as a statistical tool for multivariate analysis and is widely used in 

research dealing with large datasets, including spectroscopy (JAMES: 2013: 127-173). 

The aim to break down the attributes and identify the most significant data dimensions 

is achieved by linearly transforming the data to uncover the principal scatter direction 

of each dimension. 

The best transformation is found by visualising the attributes as a scatterplot. Then, 

the centre of all data points from all classes is found and the origin of the graph is 

moved to this location (DE SILVA 2017: 15–17). The next step is drawing a line, which 

will later become the new axis, intersecting the origin and most accurately describing 

the axis of variance of the points, followed by the reprojection of the points onto that 

line. The squared sum of all distances from each original point towards the new axis 

is called “eigenvalue”, the vector describing the tilt of the original axis to the newly 

created axis is called “eigenvector” (PEARSON 1901: 559-572). The line with the best 

eigenvalue score is chosen. The line’s eigenvector shows the influence of the original 

attributes in regard to the importance of the examined feature (JEFFERS 1964: 225–

236). The line itself represents the Principal Component 1 and is the first axis of the 

new (tilted) coordinate system. To find the second axis, all possible lines 

perpendicular to PC1 are assessed for their eigenvalues as done in the step before. 

The line which fits the variance best is chosen as axis for PC2. For each additional 

dimension in the original data, the line among the perpendicular plane (of the previous 

PCs) with the best eigenvalue is found and added to the principal components list 

(JOLLIFFE: 2002: 2-4). Once all PCs are determined, the graph is rotated so that PC1 

is at the x axis. Since the sample points are still projected onto each PC axis, they are 

now reprojected to the position the points along the PC axes intersect (HOTELLING 

1933: 417–441 and 498-520). Because the eigenvectors show the shift of the axis 

towards the PCs and thus towards an axis of more importance, they indicate the 
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proportion of importance for each former attribute for the new PC (WOLD et al. 1987: 

37–52). The proportions of each attribute in the new PC is called the “loading score”, 

comparing the loading scores for all PCs allows a numerical ranking of importance 

for all PCs (PEARSON 1901: 559-572). 

Because of the transformation into a covariance matrix, the data points have been 

transformed from absolute to relative units (JEFFERS 1964: 225–236). The results are 

changed graph axes, with the dataset having new coordinates within this graph. 

Finally, a three-dimensional scatterplot is created from the three previously identified 

most important attributes. Ideally, the different classes of the dataset should group 

together as separable clusters, with their variance spread out along one of the axes 

(KESHAVA 2003: 55–78). 

 

The PCA performs a covariance analysis to find the most important attributes in a 

dataset in order to lower dimensionality, before transforming their axis in a way that 

most accurately reflects their linear direction of variance. 

In this thesis, the sklearn.decomposition.PCA utility from the Scikit-learn machine 

learning library for Python 3.7  is used and the result plotted to a 3D scatterplot for 

the three most important attributes (PEDREGOSA et al. 2011: 2825–2830). 

3.3.2 Linear Discriminant Analysis (LDA) 

Another statistical method for dimensional reduction used in earth sciences 

(TAHMASEBI et al. 2010: 564–576) is the LDA, which is closely related to the PCA. 

It builds upon Fisher’s linear discriminant (FISHER 1936: 179–188) and also searches 

for linear combinations within the attributes, but contrary to PCA, takes not just the 

attribute values, but the actual classes themselves into account (BÜYÜKÖZTÜRK et al. 

2008: 73–92).The search for linear dependency is thus not focussed on the values, but 

on the distribution of the classes themselves by projecting the classes onto a line, 

therefore maximising separability among the categories (WANG X. et al. 2003: 2429–

2439). The resulting principal components are then plotted to axes according to their 

rank of importance, like in the PCA. 

The axes lines are formed by considering two separate criteria simultaneously. First, 

when plotting the variables, the mean within each variable dataset is found, and then 

the line is drawn in a way that maximises the distance between the means of the 
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classes (FISHER 1936: 179–188). Since more than two dimensions are considered, the 

distance is not measured between the means of the two classes, but between each of 

the class means and the central point of all classes combined (BÜYÜKÖZTÜRK et al. 

2008: 73–92) ⁠(BÜYÜKÖZTÜRK et al. 2008: 73–92). 

The second factor consequently taken into account is the minimization of variation 

(“scatter”) of the classes within the dataset along the axis (FISHER 1936: 179–188). 

The optimal ratio is then calculated by the following formula (Equation 3), where d1, 

d2 and d3 stand for the mean distances to the central point of the classes and s1, s2 and 

s3 for the distance of scatter along the newly created axis. The distances and scatter 

values are squared so that negative values do not cancel out positive ones. 

      

Equation 3: Variation ratio for axis location (LDA)   

Ideally, the numerator would be very large, representing a big distance between the 

means; and the denominator very small indicating a low scatter. All possible axes are 

assessed, then ultimately an axis is drawn at the line with the best ratio as returned by 

the equation aforementioned. The result is a dataset with coordinates along a relative 

scale, whose axes were altered from their original position in order to better 

differentiate the classes (FISHER 1936: 179–188). Drawing a three-dimensional 

scatterplot from this dataset is expected to result in a clustering of the classes. 

In this thesis, the sklearn.discriminant_analysis.LinearDiscriminantAnalysis utility 

from the Scikit-learn machine learning library for Python 3.7 is used (PEDREGOSA et 

al. 2011: 2825–2830). 

3.4 Random Decision Forest Classifier 

3.4.1 Random Decision Forest Methodology 

In supervised learning procedures, the algorithm is given a database of inputs, which 

are also called predictors, and their according output label. The predictors contain 

attributes, which are values that are corresponding with the output label (HASTIE et 

al.: 2009: 9-41). This “input database” is the basis which the learning process uses to 

create a decision model which rates the importance of predictor values based on the 



23 
 

known output labels. After creation of the model, classifications for predictors 

without a given output label can be made using the previously created decision model. 

These methods can be used for both classifications and regressions, but only 

classifications will be discussed and needed in this thesis. 

Singular Decision Trees 

Singular Decision trees follow the recursive binary splitting approach, which is a top 

down method splitting the tree into two following nodes at every node (Figure 8). 

Starting from the root node, a decision between two options is made regarding a 

singular attribute value, which in turn leads to further nodes. These nodes are called 

internal nodes, and just like the root node, divide the tree into two mutually exclusive 

regions. While from the root node, all possible nodes and node regions are accessible 

via the paths taken within the model, terminal nodes represent the end and final 

labelling decision of the tree (SONG et al. 2015: 130–135). The terminal nodes are 

thus the lowest level of the tree, at which the algorithm is sufficiently confident to 

classify the predictor with the according label. Terminal nodes exist for all possible 

labels, so that given the appropriate predictor values, the predictor can be assigned 

every possible label present in the dataset (HASTIE et al.: 2009: 101-137). 

The definition of the most binary partition (which splits the tree into two paths at this 

node) is determined by evaluating all possible splits for all possible values of all 

available predictor attributes, then choosing the splits with the lowest degree of 

impurity, meaning the most accurate and thus most stringent decision path between 

root node and terminal node (ISHWARAN 2007: 519–537). Node impurity refers to the 

mean decrease in accuracy, thus misclassification, as measured by the Gini impurity 

after validating the final labels assigned. The final model is thus a decision tree 

created by the already known predictor values and their labels, which can then be 

extrapolated onto different predictors and their values, where the output labels are 

unknown (CUTLER et al. 2012: 157–175). 
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Figure 8: First 3 layers of singular decision tree. 

The Random Decision Forest used in this thesis has 500 of these trees with a depth of 
up to 13 layers. 

 

 

Decision trees come with the inherent disadvantages of possible “overfitting” as well 

as a high sensitivity to changes in the input data (BURNHAM & ANDERSON: 2002: 1-

9). 

The term overfitting describes instances where the model is very closely dependent 

on the input data, thus distinguishing between more statistical parameters than the 

“real-life” model. This means the decision making is based on statistical noise within 

the data, as if this noise is representative of the classification (BURNHAM & 

ANDERSON: 2002: 1-9). 

Due to this close correspondence to the data (“overfitting”), a single decision tree is 

very sensitive to changes in the training data. This leads to inaccurate split parameters 

at the nodes, which are based too closely on the training data, and therefore a tendency 

to mislabel predictors (CUTLER et al. 2012: 157–175).  

Random Decision Forest 

The RDF is a supervised learning algorithm first created by Tin Kam Ho in 1996 (HO 

1995: 278–282) and later extended by Leo Breiman (BREIMAN 2001: 5–32), which is 

based on singular decision trees. Since its inception, this method has found 

widespread use and acceptance in many research fields including spectral surface 

classification due to its easy implementation and reliable results (GISLASON et al. 

2006: 294–300 ⁠; RICHARDS 2013: 343–380). 
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Random Decision Forests enables to reduce overfitting by combining multiple 

decision trees and Bootstrap aggregating or “bagging”. 

“Bagging”, as introduced by Breiman, extracts a smaller training set from the original 

training data at random, usually 75%. For each of the trees in the random decision 

forest, a different “bagged” dataset is extracted and a decision tree model built upon 

this input data created. Repeating the decision tree method many times with varying 

inputs from the “bagged” original training data results in slightly different trees with 

a different node layout and decision values. This randomization of the input dataset 

aims to reduce date dependability of the model by using many trees with consequently 

different layouts (BREIMAN 2001: 5–32). 

The unused part of the training dataset can then be used to verify the accuracy of 

classification of each individual tree ⁠(BREIMAN 2001: 5–32). Subsequently, the 

decisions made by each individual tree for a single predictor are aggregated and 

averaged. Having multiple singular decision trees with their own structure for each 

predictor as well as their classification result is then used to choose the final labelling 

decision, based on the number of instances the predictor was assigned a certain label 

(JAMES: 2013: 127-173). 

“Bagging” results in lower training data bias and overfitting and consequently in a 

higher accuracy model (BREIMAN 2001: 11). 

 

3.4.2 Random Decision Forest implementation and parameters 

In this thesis, the Scikit-learn implementation of a Random Decision Forest for 

Python 3.7 is used. Scikit-learn is an open source Python machine learning library, 

featuring many classification, regression and clustering algorithms and is publicly 

available since 2011 (PEDREGOSA et al. 2011: 2825–2830).  

Before starting to build the trees, 30% of the training data is removed and stored for 

the verification of the forest, using the sklearn.model_selection.train_test_split utility 

(“Bagging”). Usually, only 25% are removed, but due to the high frequency of several 

classifications such as “k2” in the Corg dataset and “B” in the soil dataset, increasing 

the verification sample size increases the likelihood of inclusion for different classes, 

making the verification process more accurate. A smaller sample size would result in 

a large presence of one singular class, displacing more infrequent classes and 
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consequently lead to an artificially inflated accuracy percentage. 30% “bagging” 

proved to be a reasonable compromise between reducing tree building sample size 

and maintaining a high accuracy of verification (Scikitlearn User Guide 2019: 2331). 

Tree building is then handled by the sklearn.ensemble.RandomForestClassifier 

utility, which features numerous possible parameters to influence model building. Out 

of all possible parameters, the following were considered while building the model 

for this thesis: 

- n_estimators=500 

- bootstrap=True 

- max_depth=None 

- max_features = auto. 

All other parameters remain in their standard value, as described in the documentation 

for the RandomForestClassifier. 

 

The n_estimators parameter sets the number of trees built. The default amount of 100 

was increased to 500, expecting an increase in model accuracy. 

Limiting the number of internal tree nodes and thus the depth of the tree can be done 

using the max_depth command but is set to be unlimited in this model. Not limiting 

the maximum tree depth might result in overfitting but increases the distinguishability 

of smaller variances in the training data, as present in this thesis. Different settings 

for this parameter were considered and experimented with, ultimately it was set to 

unlimited because of its higher prediction accuracy. 

As mentioned in the previous paragraph, ”bootstrapping” is a valuable tool in 

increasing accuracy, thus it is enabled by setting bootstrap=True. 

Using an integer as the parameter max_features results in no feature subset selection 

within the trees, which according to the documentation of scikitlearn is best used in 

regression tasks. Setting the parameter to auto is advised in classification tasks such 

as this implementation, meaning the size of the randomized subset of features to be 

considered for splitting an internal node is set to the square root of the remaining 

training dataset (Scikitlearn User Guide 2019: 2331). 

 

The aforementioned parameters were set to many different combinations, with the 

current setup achieving the highest level of prediction accuracy. 
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Further restraining tree size using commands such as min_samples_split and 

min_samples_leaf was considered but decided against due to the risk of lower 

distinguishability regarding features with only small variances, but as a trade-off 

slightly increases the risk of overfitting. 

Other more in-depth settings like rating node splits by entropy instead of the Gini 

Index using the criterion parameter or influencing the node split creation method 

using the splitter parameter were not changed and left in their default states 

(Scikitlearn User Guide 2019: 2331). 

3.5 Validation 

Verifying the results obtained by the Random Decision Forest is a necessary step in 

ensuring the quality of the output. Machine learning methods are quite capable of 

producing results and even high prediction accuracy scores within its dataset, but the 

results might not correlate with the reality. It is not necessarily the case that the 

classifier bases its decision on those dataset variations, which are also responsible for 

the “real-life” classifications. This “overfitting” is a common example of a situation 

where the classifier evaluates itself with high accuracy scores, but the classification 

process has lost its link to natural circumstances (BURNHAM & ANDERSON: 2002: 1-

9) ⁠ 

 

The most important metric in judging the method used in this thesis is the internal 

RDF evaluation. As described before, 30% of the training data is set aside before the 

classification, the classifier is then tested on the verification data and an accuracy 

percentage produced. Since every individual tree uses a different 30% of the training 

data and the outputted accuracy is a mean of all accuracies from each individual tree, 

it is still an important indicator as to how accurate the process is. 

The German Federal Institute for Geosciences and Resources (BGR) produces maps 

regarding all of the soil parameters (“HUMUS1000”, “BUEK1000”, 

“BOART1000”). Unfortunately, these maps are heavily interpolated. Before 

considering these maps as basis for validation, it is checked if all the SSLs used in 

this thesis are identically classified in the according soil maps. Unfortunately, for all 

classes, only 55% of data points received the same classification by both the BGR 

and the data providers. Evaluating the prediction using these maps returns very low 
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accuracy percentages (Corg 19.46%, type 48.34% and texture 20.49%). With such 

high discrepancy in classification for validation- and training, the maps will not be 

used as a method of validation. 

Also, the Topsoil Organic Carbon Content for Europe Map by the European Soil Data 

Centre was considered, but not used due to its low resolution of 1,000 m by 1,000 m 

per pixel and therefore high interpolation. Additionally, this map is built upon the 

LUCAS dataset, meaning the validation would use its own data to validate itself. The 

sample location density is also increased over the LUCAS database by adding the 

LfU and LfL datapoints to the training dataset. The LUCAS map is thus coarser in 

density than the training dataset. The idea of using map products as a method of 

verification is discarded due to the previously mentioned factors. 

 

 
Figure 9: Examplary location of „quality control” matrix. 

SCMaP pixels are in the background, their information values saved in the green point 
features. Original Soil Sample Location in yellow, surrounded by the 100x100m matrix 

in blue with the pixels “caught” in this matrix in red.  
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Basing on the SSLs, a different method for quality control is derived. 

Assuming that neighbouring pixels to the SSLs only differ marginally from the SSL’s 

soil parameter classifications, a 100 m by 100 m rectangle around each soil sample 

location is spanned. Assigning the “validation parameter” of the SSL to all other SRC 

pixels caught in the matrix leads to 15,385 pixels which can be used for quality control 

purposes (Figure 9). The central pixel of each matrix, which has been used to build 

the model, is excluded from verification. Since this method is based on the unsure 

assumption of unchanged attributes around the sample location it cannot be seen as a 

“true” verification method, more as a quality control measure.  Also, because the data 

upon which the RDF is built is used to validate itself, the resulting accuracy score is 

of limited validity. 

 

A scientifically valid method to verify the prediction accuracy cannot be 

implemented. The aforementioned methods possess limited explanatory power by 

themselves but taken together do give an overall impression of the validity. These 

methods are to be considered as “quality control”, not as true validation methods. 

4. Results 

4.1 Statistical Results 

Before presenting the predictions made by the RDF as well as their measurements of 

validity, the statistical results are shown. 

Firstly, the input database is analysed regarding its internal composition and the 

distribution of the different soil parameter classes. This gives an insight into how well 

the different classes are represented in the input dataset. Secondly, the distribution of 

reflectance values within those classes is visualized, showing how or if the different 

classes have spectral characteristics in common. After that, the correlation coefficients 

and the results of the PCA and LDA are presented. 
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4.1.1 Representation of Soil Parameter Class Distributions  

 
Figure 10: Distribution of Corg classes in soil samples 

 

 

Examining the Corg class distribution (Figure 10), a very clear dominance of the k2 

class is visible since 65.35% of all points fall into that category. The second largest 

class, k3, makes up 26.99% of the dataset. The other four classes share the remaining 

7.66%.  The total number of available points for this class is 1291. 

 

 
Figure 11: Distribution of Soil Type classes in soil samples 

 

 

Examining the categorization of soil types (Figure 11), the total number of available 

points is 952. The dominance of a single class is not as prevalent as in the Soil Corg 

category. The largest class is brown earths (B) with 37.08%, followed by rendzinas 
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(R) with 26.37%. All other classes are represented by a percentage of under 10% of 

all samples, with classes M, T and P consisting of only a few points.  

 
Figure 12: Distribution of Soil Texture classes in soil samples 

 

Analysing the soil texture classes (Figure 12), 52.31% are classed as L (Loam), 

22.22% as S (Sand), 18.49% as U (Silt) and 9.03% as T (Clay). A dominance of class 

L is visible, the total number of available SSLs is 962. 

4.1.2 Spectral Distribution of Parameters by Classes 

Carbon Organic Content 

After examining the class distribution within the training dataset, the spectral 

information for each class within the soil parameters is analysed. Firstly, the soil Corg 

class is visualized. 
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Figure 13: Reflectance Values for Corg Classes 

 
Figure 14: Mean Reflectances by Corg Class 
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Figure 15: Scatterplot for Corg numerical values per Band 

 

 

Table 5: Difference Matrix of all Corg classes for Band 4 (NIR) 

 

The reflectance plot (Figure 13) shows, for each Corg class, the reflectance value for 

each point. Also included are the average and standard deviations up- and 

downwards. The spectral lines for each class do not have significant features 

exhibited in their spectral lines which allow an easy distinction between the classes. 
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Of importance is the high reflectance variability and scatter between the classes, as 

well as the high standard deviations. All lines from the input points seem to blend 

together without showing any considerable difference. Even though some small 

differences, like the lower maximum of bands 4 and 5 are visible, the high variability 

makes an easy distinction impossible.  

Creating a plot of all mean spectra shows more interpretable results (Figure 14). The 

spectral lines are “layered”, it is visible that with the exemption of class K, the lines 

barely intersect and are ordered from higher value class at the bottom and lower value 

class at the top. 

Since this soil parameter also has numerical values, a scatterplot of the reflectance 

against the organic carbon content can be created (Figure 15). The resulting plot does 

not show differences between the classes, but instead that soil samples are spread out 

along the y-axis. Ideally, similar values and thus same-class pixels would cluster 

together at different y-values than other classes. In general, this graph shows the high 

intraclass variability and low interclass distinguishability. 

By calculating the mean spectral difference of each class to all other classes, the visual 

observations can be supported (Table 5). A larger percentage shows a bigger 

difference in the mean spectrum and thus a higher distinguishability. The highest 

difference is between classes k2 and k4 with 4.53%, the next highest difference 

between k2 and k3 is 3.06%. The difference in reflectance average of the two most 

dominant classes k2 and k3 in the NIR band implies a distinguishability.  

Soil Type 

Plotting the reflectance values for the soil types classes shows no significant 

characteristics, but a high variance and thus also a high standard deviation (Figure 

16).  

Examining the mean spectra of the classes (Figure 17) leads to a similar conclusion. 

Some classes, such as G and L differ quite a lot from each other in their mean spectra 

while almost all other classes blend reasonably closely together, especially keeping 

in mind that these lines represent the averages and that the standard deviations are 

fairly high. Even though some lines intersect each other, it seems like in general a 

class mean spectrum is either higher or lower than the other classes. Without such a 

high variance within the dataset as observed in (Figure 16), the mean class spectra 

graph might lead to the conclusion that a correct classification is possible. 
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Figure 16: Reflectance Values for Soil Type Classes
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Table 6: Difference Matrix of all Soil Type classes for Band 4 (NIR) 

 
  

Figure 17: Mean Reflectancesc by Soil Type Classes 
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This is supported partially by calculating the mean differences between all classes at 

the NIR band represented in (Table 6). Between some classes, like the combination 

of classes L and G, the mean percentual difference is reasonably high, with 7.38 

percent. Other combinations are within the 3 to 4% range, with S <-> G on the higher 

end reaching 6.19%. Classes M and L show high percentages but since their sample 

size is very small, the validity is extremely limited.  

Soil Texture 

Lastly, the spectral distribution of the parameter soil texture is investigated. 

The plotted reflectance values show similar characteristics the other soil parameters: 

low interclass variance but high intraclass variance (Figure 20(Appendix)). The 

illustrations for this soil parameter can be found in the appendix. 

Reviewing the mean spectra on the other hand (Figure 21(Appendix)) reveals a slight 

correlation, similar to the correlation within the Corg parameter. The soil texture 

classes follow a gradient where clay (T) represents the smallest grain size, silt (U) the 

medium and sand (S) the coarsest material. Not taking into account the mixture of the 

three (L), the coarsest material has the highest reflectance while the finest one has the 

lowest, with the “middle” class right in between the other two lines. This indicates a 

correlative relationship between finer material and higher absorption, which cannot 

be backed by correlation coefficients since no numerical data is available for this 

class. 

Investigating the mean difference table (Figure 11(Appendix)) shows lower values 

than the other classes, with a maximum of 1.864% for classes T and S. This can be 

explained by a higher variance in in the classes. Investigating all the spectral 

distribution results for the soil texture parameter, the distinguishability seems to be 

the lower than the other soil parameters. 

4.1.3 Correlation Coefficients 

Regarding the Corg content of the points, the Pearson correlation coefficients, 

calculated by the previously described method, for each SRC band are shown in 

Table 7. 
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Table 7: Corg and Reflectance Pearson correlation coefficients per Band 

Band Pearson R 
Band 1 (B) +0.00871 
Band 2 (G) -0.00197 
Band 3 (R) -0.01491 

Band 4 (NIR) -0.00765 
Band 5 (SWIR1) -0.00403 
Band 7 (SWIR2) -0.00846 

 

Clearly, all coefficients of all bands are very close to zero, indicating no linear 

correlation between the pixel’s reflectance value and the Corg content measured at 

these locations. The results show that from a linear perspective, the classes are not 

able to be distinguished by their reflectance value by looking at singular bands only. 

The statistical observations support the spectral analysis as done before.  

What this method does not take into account are possible patterns across bands, thus 

a correct classification is harder but not impossible.  

 

Calculating the correlation coefficients with Spearman’s method gives the results 

represented in Table 8.  

 

Table 8: Corg and Reflectance Spearman correlation coefficients per Band 

Band Spearman R 
Band 1 (B) -0.45939 
Band 2 (G) -0.53166 
Band 3 (R) -0.57061 

Band 4 (NIR) -0.53722 
Band 5 (SWIR1) -0.40953 
Band 7 (SWIR2) -0.43661 

 

Spearman’s correlation coefficient, which also takes the classes into account, reach a 

higher score of correlation. Bands 1, 5 and 7 are between -0.40 and -0.50 and thus at 

the upper end of the “low negative correlation” interpretation. Bands 2, 3 and 4 are 

even greater than -0.50 and therefore classified to have a “moderate negative 

correlation” (HINKLE et al.: 2002: 17-26). 

From these numbers, it can be concluded that there is a small trend for higher Corg 

value pixels to have lower reflectance values, especially in bands 3, 4 and 5. This 

supports and gives mathematical background to the observation of the plot (Figure 
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14), where the mean spectral lines of higher Corg classes seem to be partially “stacked” 

in negative order. 

This relationship is expected to be recognized by the Random Decision Tree 

Classifier.  

 

4.1.4 Principal Component Analysis and Linear Discriminant Analysis 

Executing the Principal Component Analysis and creating three-dimensional graph 

out of the principal components for each soil parameter shows no clear clusters 

(Figure 18 - PCA). Ideally, the different colours, which represent the classes, should 

group together and form distinguishable clusters. 

The Corg graph is quite a bit more spatially stretched than the others, but when 

changing the viewing angle, it becomes clear that there is also no clear cluster to be 

observed. A few outliers are still present. The dominance of one colour is only due to 

the drawing order of the points since the classes are plotted one by one, changing the 

viewing angle consequently also changes the drawing order.  

 

The LDA seems to show a slightly better result, at least the Corg soil parameter 

(Figure 18 - LDA). Even though all points are within the same cluster, one 

hemisphere of the cluster “sphere” is dominated by the k2 class, but the other 

hemisphere is still quite mixed. Expectantly the distinguishability for this soil 

parameter might be slightly higher.  

The other soil parameters on the other hand are indistinguishably scattered within a 

singular cluster, suggesting a low chance of successful classification.  

 

Both PCA and LDA were also conducted with the following Python scaling methods: 

-sklearn.preprocessing.MinMaxScaler 

-sklearn.preprocessing.normalize 

-sklearn.preprocessing.scale 

Datasets which span over a wide range of values can be transformed by e.g. scale 

magnification and/or reduction in order to reduce their order of magnitude. Since 

the scaling methods did not show an improvement over the non-scaled data, the 

original data is depicted, and the scaled datasets are discarded (Figure 18).  
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Figure 18: 3D PCA and LDA graphs for each soil parameter. 

Values are dimensionless. PC1 on x axis, PC2 on y axis, PC3 on z axis. 
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4.2 Validation and Quality Control 

A scientifically accurate validation method cannot be implemented. The following 

accuracy metrics have only limited scientific significance. 

 

Using the internal RDF quality control as described (cf. “3.5 Validation”), the 

classification accuracy can be approximated (Table 9) 

 

Table 9: Internal RDF Prediction Verification 

Soil Parameter Internal RDF Prediction Accuracy 
Corg Content 74.55% 

Soil Type 41.09% 
Soil Texture 18.22% 

 

As previously discovered in the statistical results, the Corg content shows the highest 

accuracy, while the other soil parameters have lower scores. 

The classification results for soil type and texture are only slightly better (by about 

8% for soil type, 2% for soil texture) than results achieved by guessing and can be 

thus interpreted as failed. 

The Corg classifier on the other hand does show some correlation. The internal 

verification by itself cannot be taken as absolute truth because overfitting might have 

occurred. Also, since a considerable majority of points belong to the k2 class, 

assigning each and every point the k2 classification might already result in a high 

accuracy percentage. 

 

After drawing a buffer around the sample locations and assigning each pixel within 

this buffer the same truth value as the sample location itself, a total of 15,385 pixels 

can be used to assess the quality of prediction. The accuracy percentages achieved 

are shown in Table 10. 

Table 10: Matrix “quality control” accuracy 

Soil Parameter Matrix “quality control” accuracy 
Soil Corg Content 59.59% 

Soil Type 47.17% 
Soil Texture 40.49% 
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Soil parameter maps, which are published by German authorities, where not used for 

validation because of the aforementioned reasons (cf. “3.5 Validation”). 

4.3 RDF Classification Results – Map Products 

A map which shows the predicted classes for the whole study area is produced by fitting 

the Random Decision Forest Classifier model with the reflectance value of all ≈63 

million SRC pixels, for each soil parameter. Three maps in a tiff format with the pixel 

size of 30 m x 30 m are created, one map for each soil parameter. 

Especially the Corg map shows regional clustering of classes, which supports a correct 

classification since the organic carbon content of the soil varies, but only on a scale 

of several hundred meters to a few kilometres. Comparing the classification result 

(Figure 19) with the SRC, it becomes clear that the pixel colour correlates with the 

assigned Corg class. 

Additionally, darker areas in the SRC correlate with higher-class Corg content areas 

in the predicted map. This reaffirms the observations made previously that a higher 

Corg content correlates with a lower reflection value, thus darker SRC pixels. 

 
Figure 19: Side-by-side comparison of SRC and predicted Corg content map. SRC 
(SCMaP product): false color image with band 7 as R, 5 as G and 3 as B. 
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The soil type map shows an overwhelming presence of brown earth, scattered with 

different classes in between, comparable to white noise. This suggests that the 

regionally different soils were mostly incorrectly classified, but some very general 

spatial differences in the prevalence of some classes can be observed (c.f. Figure 

22(A): Predicted Soil Type Map, excerpt). 

 

The soil texture map presents a more or less random scattering of the classes along 

the SRC pixels, indicating that the classification has failed. (c.f. Figure 23(A): 

Predicted Soil Texture Map, excerpt) 

 

5. Discussion 

The following section discusses the validity of the results obtained with the methods 

used, as well as possible improvements. 

Starting with the training dataset, the nominal number of SSLs is sufficient for RDF 

model building. Unfortunately, due to the dominance of single classes in all three soil 

parameters, other classes are severely underrepresented. This causes accuracy 

problems due to an absence of enough training data for certain classes, possibly 

resulting in mislabelling. It would be possible to increase the number of available 

points for all classes significantly by including the 792 points, which were taken 

outside of the timeframe, making the assumption that the locational parameters did 

not change. Also, scaling the input dataset in a way that results in similarly sized 

classes might result in better class separation. 

During the next step, the statistical analysis, several methods to attempt to identify 

correlations between soil parameters and reflectance are used. Firstly, visualising the 

classes and their reflectance gives a first impression of the difficulty in distinguishing 

the classes. The first conclusions are already visible, and then consequently supported 

by the statistical methods.  

The Pearson R values for the Corg parameter are very close to zero, indicating no linear 

correlation between the SRC pixel and the Corg value of the SSL. Following the 

correlation coefficient interpretation guide by Hinkle, all bands show “negligible 

correlation” (HINKLE et al.: 2002: 17-26).. The Spearman R results, which also take 

the classes into account, reach higher values. Bands 1, 5 and 7 are interpreted as “low 
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negative correlation”, while bands 2,3 and 4 are observed to have “moderate negative 

correlation” (HINKLE et al.: 2002: 17-26)⁠. These results support the observation that 

the higher the Corg concentration, the lower the reflectance value. The moderate 

correlation suggests that a correct classification by the RDF is not impossible. 

For the numerical values inherent in the Corg parameter, the correlation coefficients 

support a small but noticeable negative linear relationship already visible in the mean 

spectra, while the PCA and LDA methods were not able to differentiate the classes in 

any meaningful way. Given the current dataset, the best attempt to separate the classes 

is made and a good understanding of the dataset is achieved, but a concise statistical 

separation remains unsuccessful. Further attempts using more sophisticated methods 

of multivariate statistical analysis could possibly identify stronger correlations, such 

as the Partial Least Square method (NOCITA et al. 2014: 337–347). Possible 

improvements in expressing the differences in spectral means of the data could also 

be achieved by using methods such as the Spectral Angle Mapper  (PARK et al. 2007: 

323–333) or the Spectral Correlation Angle (DENNISON et al. 2004: 359–367) 

 

The Corg classes, as well as the other soil parameter classes used in this thesis are 

designed for the needs of soil experts. Keeping spectral distinguishability in mind, it 

is possible to redefine the classes, for example join soil types with similar topsoils 

together or classing Corg content on a nominal scale.  

Corg classes for example vary greatly in their range; analysing the change in 

reflectance of different Corg contents and adjusting the class sizes accordingly (for 

example into 2% steps) might produce an improved result by providing more uniform 

class ranges. Another possibility would be to perform a Random Decision Forest 

Regression instead of a classifier, using the values themselves instead of classes. 

The topsoil layers of the soil type classes used in this thesis were not analysed for 

their spectral reflection, it is thus likely that trying to separate classes with similar 

reflectance features lowers the accuracy of prediction. Combining these similar 

classes might produce higher accuracy predictions, but simultaneously lower the 

informative value of the final map product. Nani et al, for example, achieved an 

accuracy increase of 30% by grouping classes together (NANNI et al. 2012: 103–112).  

It is also problematic that the input database only takes reflectance values into account 

as distinguishing factors. Other components, such as the bedrock and genesis of the 

soil, wetness, altitude and the intensity of potential agricultural use are ignored as 
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factors in this classification. Using a wetness index based on a digital elevation model 

to exclude permanently moist soils has the potential to lower variability within the 

classes, leading to a more accurate prediction. Quantifying or classifying these local 

circumstances and consequently creating SSL groups of situational conformity will 

most likely greatly improve accuracy but is very time consuming and demands an 

extensive knowledge in soil studies and thus exceeds the limit of this thesis. 

 

After the statistical analysis of the classes, a RDF is built in this thesis. Using the 

aforementioned improvement attempts such as removing spectral outliers and 

tweaking the RDF settings, the internal RDF accuracy was improved by 11% (Corg), 

4% (soil type) and 1% (soil texture) from its original state to its final state. Still, the 

risk of overfitting is accepted by not limiting the decision tree size in order to improve 

distinguishability. This might not be the perfect settings for the RDF model, but 

through experimentation these settings proved to be optimal for the given training 

dataset. 

 

The validation of the results poses a great challenge. Similar studies, especially the 

one conducted by (LAKSHMI et al. 2015: 1452–1460) and (NANNI et al. 2012: 103–

112), validated their results by entirely mapping and sampling their study area and 

comparing the results obtained to the local sampling data. This requires extensive and 

expensive field work and is also limited to a much smaller study area. Due to the 

nature of this thesis and the size of the study area, this method is not viable. 

 

The soil parameter maps are not used due to their limitations; the method of using a 

matrix around the SSLs bases on the uncertain assumption that the soil parameters do 

not change within the SSLs proximity. The internal RDF validation, usually quite an 

important metric, only has limited validity since the majority validation dataset 

consist of mostly one class. Also, this method cannot detect the effects of 

“overfitting”. Visually examining the resulting prediction maps does give the 

impression that the classification has worked to a reasonable degree (at least for the 

Corg soil parameter), but this method does not produce a quantifiable accuracy score. 

Consequently, several accuracy metrics, individually only of limited significance, 

taken together can give a vague impression of overall accuracy. The internal RDF 

validation, the method of creating a matrix “quality control” method and manually 
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examining the resulting maps and looking for areas of conformity taken together can 

give only an accuracy estimation. 

Even though promising results for the Corg content prediction are visible, these 

observations cannot be sufficiently backed by statistical information because an 

accurate and scientific validation method is unavailable. 

 

6. Conclusion 

This thesis analysed the spectral properties of a Landsat soil composite by using the 

Spearman and Pearson correlation coefficients as well as a PCA and LDA. This was 

done in order to investigate if the reflectance values correlate with the soil parameters 

of organic carbon content, soil type and soil texture. Based on these spectral 

properties, a prediction on all ca. 63 million SRC pixels was executed using an RDF. 

 

Regarding the possible correlation between SRC reflectance values and soil 

parameters, a considerable correlation for the Corg parameter can be observed and 

consequently statistically proven, showing that the organic carbon content does 

correlate with the SRC’s spectral information. Examining the other two soil 

parameters, no correlation could be established using the aforementioned methods. 

As to the prediction validation, results of uncertain accuracy were achieved. A 

concise verification method, showing clear statistical results of the prediction 

accuracy could not be implemented. Nevertheless, a considerable prediction accuracy 

for the Corg soil parameter can be visually observed in the resulting maps and is 

backed by the internal RDF validation as well as the implemented “quality control” 

measures. The other two soil parameter predictions (soil type and soil texture) can be 

considered failed. 

The RDF was able to show its potential and produce an output map of reasonable 

quality for the Corg soil parameter, but not for the other parameters. The ability of the 

RDF to build a model upon the very small correlation within the dataset shows its 

efficiency in satellite-based soil classification applications. Given an improved 

quality of the training data, the RDF is a viable method of classifying SRC pixels. 
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Ultimately it can be stated that a large amount of information was extracted from the 

input dataset in its current state, but improvements are most definitely possible. 

Statistical applications have been extensively used to gain information about the 

dataset and connect the spectral information to the soil properties, a continuous effort 

to improve the dataset and its statistical analysis are promising.  

The resulting maps possess a limited validity since they are built upon an imperfect 

dataset and the aforementioned assumptions, with the Corg soil parameter prediction 

promising the highest accuracy and validity. Expanding the statistical research as well 

as using soil expertise to investigate the details of soil reflectance under different 

circumstances, leading to an improved quality of the input data as well as the 

prediction, will most likely result in enhanced classification and prediction 

accuracies. 

 

A growing population and its need for nutrition, the ongoing climate change as well 

as the changing ecosystems pose great challenges to scientists and politicians around 

the world. Observing and analysing the soils of this planet, which play an important 

role in these challenges, provides decision-makers with valuable information. 

Continuing the effort of extracting soil information from multispectral images and 

composites promises to improve the availability of large-scale soil information. 
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Appendix 

 
Figure 20(A): Reflectance Values for Soil Texture Classes 

 
Figure 21(A): Mean Reflectance for Soil Texture Classes 

 

Table 11(A): Difference Matrix of all Soil Texture Classes for Band 5 (SWIR1) 
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Figure 22(A): Predicted Soil Type Map, excerpt 

 
Figure 23(A): Predicted Soil Texture Map, excerpt 
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